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ABSTRACT: The Kuroshio Extension (KE), an eastward-flowing jet located in the Pacific western boundary current sys-
tem, exhibits prominent seasonal-to-decadal variability, which is crucial for understanding climate variations in the north-
ern midlatitudes. We explore the representation and prediction skill for the KE in the GFDL SPEAR (Seamless System
for Prediction and Earth System Research) coupled model. Two different approaches are used to generate coupled reanal-
yses and forecasts: 1) restoring the coupled model’s SST and atmospheric variables toward existing reanalyses, or 2) assimi-
lating SST and subsurface observations into the coupled model without atmospheric assimilation. Both systems use an
ocean model with 18 resolution and capture the largest sea surface height (SSH) variability over the KE region. Assimilat-
ing subsurface observations appears to be essential to reproduce the narrow front and related oceanic variability of the KE
jet in the coupled reanalysis. We demonstrate skillful retrospective predictions of KE SSH variability in monthly (up to
1 year) and annual-mean (up to 5 years) KE forecasts in the seasonal and decadal prediction systems, respectively. The
prediction skill varies seasonally, peaking for forecasts initialized in January and verifying in September due to the winter
intensification of North Pacific atmospheric forcing. We show that strong large-scale atmospheric anomalies generate
deterministic oceanic forcing (i.e., Rossby waves), leading to skillful long-lead KE forecasts. These atmospheric anomalies
also drive Ekman convergence and divergence, which forms ocean memory, by sequestering thermal anomalies deep into
the winter mixed layer that re-emerge in the subsequent autumn. The SPEAR forecasts capture the recent negative-to-
positive transition of the KE phase in 2017, projecting a continued positive phase through 2022.

KEYWORDS: Atmosphere-ocean interaction; Boundary currents; Climate prediction; Forecasting; Seasonal
forecasting; Climate models; Coupled models; Ensembles; Reanalysis data; Climate variability; Decadal variability;
Oceanic variability

1. Introduction

The Kuroshio Extension (KE) is an eastward extension jet
of the poleward-flowing, warm ocean current, the Kuroshio,
on the west side of the North Pacific Ocean. Over the KE
region, sea surface height (SSH) and oceanic heat content
anomalies exhibit strong variability on interannual and longer
time scales (Qiu 2002). The KE is well known as a turbulent
current system characterized by short-time scale eddy activity
and large-amplitude meanders (Qiu and Chen 2005; Kelly
et al. 2010). At the same time, the KE has a key role in deter-
mining the substantial decadal variability of the Pacific cli-
mate through its prominent quasi-decadal SSH fluctuations

(Pierce et al. 2001; Kwon and Deser 2007; Kwon et al. 2010;
Qiu et al. 2014).

Previous studies have focused on understanding low-
frequency KE variability because the decadal KE modula-
tions are linked to changes in important physical dynamics of
the western boundary current (WBC) system (e.g., Qiu and
Chen 2005, 2010; Taguchi et al. 2007, 2010; Qiu et al. 2014). In
particular, Qiu et al. (2014) have demonstrated that the decadal
transitions of KE variability described by SSH variations (i.e.,
area-averaged SSH anomalies over 318–368N, 1408–1658E) can
effectively explain the decadal changes in the latitudinal posi-
tion of the oceanic jet, the length of eastward transport, and
the strength of the southern recirculation gyre over the WBC
system. While sea surface temperature (SST) is mainly modu-
lated by sea surface heat fluxes, rapidly dissipating on seasonal
time scales (Qiu and Kelly 1993; Kelly and Qiu 1995; Deser
et al. 2003), the SSH, which is more related to ocean circula-
tions and oceanic heat content, tends to have a longer memory
of climate time scales (Sutton and Mathieu 2002; Kelly et al.
2010; Na et al. 2018). Because the KE SSH variability is one of
the most dominant modes of large-scale variability in the
North Pacific region and contributes a substantial fraction of
the Pacific decadal variance (Schneider and Cornuelle 2005;
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Qiu et al. 2007; Kwon and Deser 2007; Anderson 2019), the
degree of realism in the decadal KE state in global coupled
climate models is crucial for understanding and projecting
long-term changes in midlatitude air–sea coupled systems.

The ability of climate models to reproduce KE decadal var-
iability may arise from the robust physical mechanisms driv-
ing and maintaining the low-frequency component, currently
well established as an air–sea coupled system. The processes
that affect the decadal KE system encompass regional ocean–-
atmosphere interactions, including oceanic advection (Qiu and
Kelly 1993; Qiu 2000; Kelly and Dong 2004), local atmospheric
forcing with related surface heat fluxes (Nakamura et al. 1997;
Frankignoul and Kestenare 2002; Park et al. 2005; Linkin and
Nigam 2008), and reemergence mechanism (Alexander and
Deser 1995). In addition, remote atmospheric forcing over the
central midlatitude North Pacific is especially known for mod-
ulating the KE dynamics on a longer time scale (Frankignoul
et al. 1997; Miller et al. 1998; Deser et al. 1999; Seager et al.
2001; Schneider et al. 2002; Qiu 2003; Taguchi et al. 2007;
Sasaki et al. 2013).

The remote wind stress curl anomalies (= 3 t) have long
been described as the evident forcing of KE decadal variabil-
ity, where the KE is modulated by wind-driven, large-scale
oceanic Rossby waves that convey the SSH anomalies from
the central North Pacific to the WBC system. Observational
and statistical analyses and numerical simulations have shown
that westward-propagating baroclinic Rossby waves are asso-
ciated with the natural variability of the North Pacific atmo-
sphere (e.g., Latif and Barnett 1994 1996; Deser et al. 1999;
Schneider and Miller 2001; Qiu et al. 2007; Taguchi et al. 2007
2010; Kwon et al. 2010; Sasaki et al. 2013). Specifically,
changes in the intensity and location of North Pacific atmo-
spheric wind forcing [i.e., the Aleutian low or North Pacific
Oscillation (NPO)] are primarily responsible for the midlati-
tude anomalous SSH movement through Ekman transport
divergence and convergence (Latif and Barnett 1994; Alexander
and Scott 2008; Ceballos et al. 2009). The tropical atmospheric
influences, however, cannot be excluded because the El
Niño–Southern Oscillation (ENSO) teleconnections signifi-
cantly alter the surface winds and fluxes of heat and momen-
tum, which in turn impact SST, mixed layer, and oceanic
currents of the North Pacific Ocean (Trenberth et al. 1998;
Alexander et al. 2002; Liu and Alexander 2007). Although
the question of how much the KE decadal variance is
explained by separate tropical and extratropical forcing
remains unclear, the robust finding that the midlatitude wind
forcing drives decadal changes in the KE 2–3 years in
advance certainly suggests the possibility of skillful KE
forecasts.

Compared to existing forecasts for the other major climate
modes (e.g., ENSO, Pacific decadal oscillation, Atlantic
meridional overturning circulation, etc.), which have been
extensively investigated and validated using fully coupled
numerical simulations, the KE forecast skill has been mostly
confined to a linear baroclinic Rossby wave model or Hov-
möller diagrams of the zonal band of KE SSH anomalies
(318–368N) (e.g., Qiu 2003; Qiu et al. 2007, 2014). While these
empirical analyses have provided a dynamic framework to

explore the KE prediction, they are limited by their inability
to resolve related variables in their analyses (i.e., covarying
atmospheric/oceanic variability in all dimensions), restricting
in-depth investigation of the KE dynamics in the context of
large-scale North Pacific variability.

Previous studies have explicitly and implicitly demonstrated
the potential necessity of skillful KE forecasts in capturing the
integrated dynamics of the entire regional WBC system and
its impact (Zhou et al. 2015; Piazza et al. 2016; Ma et al. 2015,
2017; Morioka et al. 2019; Joh and Di Lorenzo 2019; Siqueira
et al. 2021). For an examination of impacts and mechanisms
of the KE system, several studies have suggested that a high-
resolution ocean model ensemble approach (i.e., eddy-resolv-
ing, 0.18, or eddy-permitting, 0.258) is essential for building
accurate detection and prediction of the turbulent eddy activ-
ity and related atmospheric/oceanic feedback (Piazza et al.
2016; Zhou et al. 2015; Ma et al. 2017; Siqueira et al. 2021).
On the other hand, for KE prediction, the successful decadal
KE forecasts using linear Rossby wave models imply that
midlatitude large-scale SSH changes are largely governed by
linear baroclinic vorticity dynamics and effectively account
for the temporal evolution of the low-frequency KE variabil-
ity (Qiu 2002; Taguchi et al. 2007; Qiu et al. 2014; Nonaka
et al. 2016). Midlatitude atmospheric forcing excites basin-
scale oceanic Rossby waves, enabling skillful predictions
of large-scale SSH variability with even a relatively coarse
horizontal model grid. In relation to a constraint of limited
computational resources, examining how the different
approaches or configurations of the coupled climate system
(e.g., data assimilations and ocean model resolutions) repro-
duce and predict the KE dynamics could provide essential
information for diagnostic discussion on the Pacific WBC
system. If simple configurations confirm skillful KE predic-
tions, these would facilitate efficient monitoring of the KE
system and, more importantly, make it possible to investi-
gate coherent large-scale atmospheric and oceanic circula-
tions that were previously absent in statistical-dynamical
models.

This paper investigates the representation and prediction
skill of KE variability on a decadal and seasonal time scale
using a new coupled prediction system named SPEAR (Seam-
less System for Prediction and Earth System Research) at the
Geophysical Fluid Dynamics Laboratory (GFDL). Decadal
and seasonal reanalysis systems with different approaches and
corresponding retrospective forecasts are described in section 2.
In section 3, we present the spatiotemporal representation of
the KE and discuss the different approaches of data assimila-
tions in reproducing the low-frequency component of the KE.
We then evaluate the prediction skill of decadal KE fluctuations
using SPEAR prediction systems, showing that both decadal
and seasonal forecast systems exhibit significant long-lead pre-
dictability of KE SSH fluctuations in agreement with the obser-
vation satellite. At the end of section 3, we elucidate the
mechanism of KE predictability in connection with the coupled
air–sea processes of the North Pacific Ocean and suggest that a
strong seasonality of midlatitude wind forcing plays an impor-
tant role in maintaining the long-term ocean memory, leading
to skillful long-lead KE forecasts (∼1 yr for seasonal and ∼5 yr
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for decadal prediction). The related potential applications to
regional impact over the Pacific region are discussed in section 4.

2. Model, datasets, and methods

a. SPEAR model

SPEAR, a new seasonal-to-decadal modeling and predic-
tion system developed by the GFDL, consists of the AM4-
LM4 atmosphere/land model (Zhao et al. 2018a,b), MOM6
(https://github.com/NOAA-GFDL/MOM6) ocean model
(Adcroft et al. 2019), and SIS2 sea ice code (https://github.
com/NOAA-GFDL/SIS2) with the ability to run large
ensemble simulations. The SPEAR model shares many
components of the recently developed GFDL CM4 and
offers different options for atmospheric horizontal resolu-
tions ranging from 18 to 0.258, depending on the interests of
research and prediction. Here we use a low-resolution configu-
ration (SPEAR_LO; 18 atmosphere and land) to produce large
ensembles and data assimilation due to efficient computational
speed. We also utilize a medium-resolution model (SPEAR_
MED; 0.58) that is designed to resolve weather extremes or short-
time climate variability (e.g., hurricanes, thunderstorms, extratrop-
ical storms, and snowpack). The ocean model resolution is
approximately 18 (with tropical refinement) in all configura-
tions. The details of the configurations and physical parameter-
izations of the SPEAR can be found in Delworth et al. (2020).

b. Reanalysis systems designed for decadal and
seasonal forecasts

Two coupled reanalysis products are developed for ini-
tializing SPEAR forecasts. Both reanalysis systems are pro-
vided by combining the time-varying coupled states with
observational data assimilation. In the first coupled reanaly-
sis system (RS-ATMSST in Table 1), atmospheric winds
and temperature are restored toward 6-hourly Japanese
55-Year Reanalysis (JRA-55; Kobayashi et al. 2015), and
SST is restored toward the time-varying observations from
NOAA Extended Reconstructed Sea Surface Temperature
version 5 (ERSSTv5) (Huang et al. 2017). By restoring
time-dependent atmospheric observations and SST, the

model ocean surface experiences a similar sequence of air–
sea heat and momentum fluxes as the real ocean. As a
result, the model ocean may respond dynamically in a way
similar to the observed ocean, even without direct subsur-
face ocean data assimilation (Yang et al. 2021).

The second coupled reanalysis system (ODA in Table 1)
solely uses ocean data assimilation without atmospheric
observations. The assimilated ocean observations include
daily NOAA Optimum Interpolation Sea Surface Tempera-
ture version 2 (OISSTv2) (Reynolds et al. 2007), Argo tem-
perature and salinity data (Argo 2019), daily Global Tropical
Moored Buoy Array temperature (https://www.pmel.noaa.
gov/gtmba/), and XBT (expendable bathythermograph) data
from the Global Temperature and Salinity Profile Programme
(GTSPP) (Sun et al. 2010). While the ocean component is
constrained by these above observations and the sea ice
component indirectly communicates with the assimilated
SST, the atmosphere and land components freely evolve
given the ocean and sea ice boundary conditions. More
descriptions about ODA are documented in Lu et al. (2020)
(referred to as SPEAR Ocean Data Assimilation system,
SPEAR_ODA).

The different reanalysis systems described above share the
same radiative and aerosol forcing. Before 2014, observed
estimates of changes in greenhouse gases, natural and anthro-
pogenic aerosols, solar irradiance, and land-use changes are
used to force the model. From 2015 onward, radiative forcing
changes from the Shared Socioeconomic Pathway 5–8.5
(SSP5–8.5) are applied to the model. See Delworth et al.
(2020) for further details on the radiative forcing. Both initial-
izations are conducted as an extensive ensemble set of
30 members. RS-ATMSST and ODA are run for the period
1958–2020 and 1990–2019, respectively.

c. Retrospective forecasts

SPEAR forecasts for the decadal and seasonal prediction
of KE SSH are evaluated at different lead times (DRF and
SRF in Table 2). The decadal reforecast system (DRF) is ini-
tialized from RS-ATMSST, where time-varying atmospheric
components and SST are restored to observations as initial
conditions, but no subsurface ocean data assimilation is

TABLE 1. Summary of reanalysis products designed for SPEAR forecasts. Both systems use the SPEAR_LO model [100-km
atmosphere and 18 ocean resolution; more details in Delworth et al. (2020)]. [JRA 5 Japanese Reanalysis (Kobayashi et al. 2015);
ERSSTv5 5 NOAA Extended Reconstructed Sea Surface Temperature version 5 (Huang et al. 2017); OISSTv2 5 Optimum
Interpolation Sea Surface Temperature version 2 (Reynolds et al. 2002); EAKF 5 ensemble adjustment Kalman filter (Zhang et al.
2007). All models use the SPEAR coupled simulations with CMIP6 historical (1851–2014) and future projected radiative forcing
SSP5-8.5 (2015–2100; Delworth et al. 2020).]

GFDL SPEAR reanalysis systems RS-ATMSST ODA

1958–2020 1990–2019
Atmospheric initialization Restoring air temperatures and winds to

JRA reanalysis
No atmospheric restoring in long run with

subsurface ocean assimilation
Ocean initialization Restoring SST to ERSSTv5 no subsurface

assimilation
Surface and subsurface assimilations

(EAKF) Daily OISSTv2, Argo, XBT and
tropical moorings

Ensemble members 30 30
Reference Yang et al. (2021) Lu et al. (2020)
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utilized. Each DRF member is initialized on 1 January every
year from 1961 to the present (i.e., 2021) and integrated for
10 years (120 months). A set of reforecasts with 20-member
ensembles is conducted. Significant forecast skill of DRF in
the prediction of North Atlantic subpolar gyre SST, the multi-
decadal SST trend, and Sahel precipitation can be found in
Yang et al. (2021).

For the seasonal reforecast system (SRF), while the ocean
initial conditions are from ODA, the atmosphere, land, and
sea ice initial conditions are from a separate ensemble of
runs, SPEAR_MED_nudged in Lu et al. (2020). In the
SPEAR_MED_nudged experiment, the air temperatures,
winds, and humidity are restored to the 6-hourly data from
the Climate Forecast System Reanalysis (CFSR; Saha et al.
2010) and SST restored to the daily observations from Opti-
mum Interpolation Sea Surface Temperature (OISST;
Reynolds et al. 2007). The details of the SPEAR_MED_nudged
run can be found in Lu et al. (2020). SRF is initialized on the first
of each month from 1992 to the present (i.e., 2021 January), and
each forecast is integrated for 1 year (12 months) with 15 ensem-
ble members.

d. Observational datasets

Sea surface height initializations and retrospective forecasts
are validated against monthly averages of 0.258 global SSH
datasets of SSALTO/DUACS altimetric mean dynamic topog-
raphy distributed by the Copernicus Marine and Environment
Monitoring Service (CMEMS). To examine the KE-related
atmospheric variability, we use monthly sea level pressure
from the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–NCAR)
reanalysis (Kalnay et al. 1996).

e. Predictability and prediction skill

In this study, predictability indicates the potential ability to
predict, when given a perfect physical model and accurate ini-
tial conditions. Predictability assesses whether a certain phe-
nomenon can be theoretically predicted or not. In contrast,
prediction skill assesses the actual accuracy of real-world pre-
dictions, given an imperfect model, limited observations, and
imperfect initialization methods.

f. Prediction skill evaluation

Before evaluating the KE prediction skill from the reforecast
systems, we compute forecast anomalies by removing the lead-
time-dependent forecast climatology (i.e., different base periods
for different forecast systems), where the climatological aver-
ages are obtained as monthly means of each lead time and grid
point from the raw forecast. This process eliminates the related
forecast bias such as climate drift that may derive from a system-
atic model error, where the climatology of the model is different
from the observed climatology (i.e., Yang et al. 2013; Meehl et al.
2014; Yang et al. 2018; Jacox et al. 2019). Also, to optimize the
predictive skill, we apply the trend correction that adjusts a
time-dependent trend by fitting linear trend coefficients for each
forecast lead time (Kharin et al. 2012). Specifically, to correct a
difference between the observed and modeled long-term trends,
the modeled long-term trend is replaced with the observed one.
To compute the linear trend corrections, we use the standard
least squares method depending on both lead time and the ini-
tial year. We measure the forecast skill with the anomaly corre-
lation coefficients (ACC) between forecasted and observed
fields, as is widely used in previous studies (i.e., Stock et al.
2015; Jacox et al. 2019; Yang et al. 2021). We develop a
damped persistence model, known as the CLIPER (climatol-
ogy and persistence) forecast (Knaff and Landsea 1997). In this
study, we define “significant skill” as the forecast skill above
persistence (e.g., when the ACC are higher than CLIPER fore-
cast) and also when it is statistically significant (10% level)
based on the Monte Carlo approach. In the Monte Carlo
method, we generate large sample sets realizations (e.g., 6000)
of an ensemble with 30 random pairs of time series that contain
the same characteristics of the observed KE index [e.g., the
same time steps (N), mean, standard deviation, and autocorre-
lation] using the first-order autoregressive model. For the sta-
tistical significance calculations, the degrees of freedom are
adjusted following Panofsky and Brier (1958) due to the red
noise component of the KE index. The effective degrees of
freedom are determined as

Neffective 5 N 1 2 a( )= 1 1 a( ),
where N is the length of the time steps and a is the lag-1
autocorrelation.

TABLE 2. Description of the SPEAR coupled forecast system for the decadal and seasonal predictions. All models use the SPEAR
coupled simulations with CMIP6 historical (1851–2014) and future projected radiative forcing SSP5-8.5 (2015–2100) (Delworth et al.
2020).

GFDL SPEAR prediction system Decadal retrospective forecast (DRF) Seasonal retrospective forecast (SRF)

Model SPEAR_LO (Delworth et al. 2020) SPEAR_MED (Delworth et al. 2020)
Atmosphere resolution 100 km 50 km
Ocean resolution 18 (1/38 in the tropics) 18 (1/38 in the tropics)
Initialization month 1 January First of each month
Forecast length 10 years 1 year
Time period considered 1961–2021 1992–2021
Atmos., land, and sea ice initial condition From RS-ATMSST From SPEAR_MED_nudged (Lu et al. 2020)a

Ocean initial condition From ODA
Ensemble member 20 15
Reference Yang et al. (2021) Lu et al. (2020)
a Restoring temp, wind, and humidity to NOAA/NCEPCFSR (Saha et al. 2010) and restoring SST to OISSTv2.
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3. Results

a. KE representation in SPEAR coupled reanalysis systems

We examine the representation of spatial characteristics of
the KE system, including the mean state and variability of the
KE SSH using the observation satellite altimeter and SPEAR
reanalysis large ensemble (i.e., 30 members of RS-ATMSST
and ODA) (Figs. 1 and 2). Figure 1 shows a comparison of
the horizontal climatological SSH gradient between the
observed and simulated patterns. The observation (Fig. 1a)
and ODA (Fig. 1b) show similar latitudinal positions of the
KE jet and its meanders, whereas RS-ATMSST (Fig. 1c)
exhibits a less meandering jet with a northward displaced
position with respect to observation and ODA of ∼28. A dif-
ference in the position and structure of the oceanic jet simu-
lated by the two systems suggests that the subsurface ocean
data assimilation (i.e., subsurface observations) is essential to

detect the accurate KE axis via the observational temperature
and salinity that constrain ocean circulation through thermal
wind relationship, especially for the ocean component model
with 18 horizontal resolution. Partially, the resolution of the
SST observations used in the data assimilation may also affect
the simulation of the KE jet because ODA uses much higher
resolution observed SST constraints than RS-ATMSST (i.e.,
0.258 OISSTv2 for ODA vs 28 ERSSTv5 for RS-ATMSST;
Table 1), in that the restored or assimilated SST observation
with high-resolution can contain the impact of intrinsic oce-
anic mechanisms on the KE, such as mesoscale eddy activity.
As for the common model bias detected in the two different
simulations, both simulated annual mean SSH patterns show
a weaker SSH gradient across the western North Pacific than
in the satellite altimeter observations, which might be associ-
ated with insufficient mesoscale eddy activity to the relatively
coarse horizontal resolution of the current ocean model. SSH

FIG. 1. Annual mean SSH climatology for the period of 1993–2019 from (a) the observation satellite, (b) ODA, and (c) RS-ATMSST.
The 30-member ensemble means from the reanalysis system are shown. The KE oceanic jet measured by strong meridional SSH gradient
(above two standard deviations of global SSH/y) is denoted as a solid black contour [1 m for (a); 0.5 m for (b) and (c)] with an interval
of 0.1 m. Area-averaged RMSE (root-mean-square error) of reanalyses are shown at the bottom right in (b) and (c).

FIG. 2. North Pacific SSH variability and KE pattern for the period of 1993–2019. Standard deviation of SSH anomalies from (a) the
observation satellite, (b) ODA, and (c) RS-ATMSST. (d)–(f) As in (a)–(c), but for the KE pattern (m) as the regression coefficient
between the SSH anomaly field with the normalized KE index (area-averaged SSH anomalies over 1408–1658E and 318–388N, denoted as a
black box).
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biases can also stem from zonal wind stress biases (i.e., Lee
et al. 2013; Landerer et al. 2014). The relatively coarse hori-
zontal resolution of the atmosphere models may result in
insufficient wind forcing spatial peaks that affect the SSH
gradient.

In Fig. 2, SSH standard deviations show the exceptionally
strong SSH variance over the KE region in both observation
and models. Compared to observation, climate models under-
estimate the KE SSH interannual fluctuations. ODA exhibits
a very similar SSH standard deviation pattern as observed
regarding the spatial structure and location of the maximum
SSH (cf. Figs. 2a,b). On the other hand, RS-ATMSST shows
the intensification of KE jet overshoot that takes a northward
displaced position compared to the observed (cf. Figs. 2a,c).
We next present regression maps (Figs. 2d–f) computed by
SSH anomalies with the KE index [area-averaged SSH anom-
alies over the KE region (1408–1658E and 318–388N)]. In this
study, the definition of the KE region is slightly different from
Qiu et al. (2014) to cover the region showing the strong SSH
variability (Fig. S1 in the online supplemental material) and
the region of KE jet overshoot in RS-ATMSST. A compari-
son of the KE pattern between the observation and models
reveals (Figs. 2d–f) that the relatively coarse horizontal reso-
lution of the current ocean model may not accurately repre-
sent the narrow frontal variability of the KE jet, especially
when the simulated oceanic fields are not constrained with
subsurface observations (cf. Figs. 2d,f). In contrast, compared
to ODA, RS-ATMSST appears to more reasonably capture
the observed basin-scale signatures of the KE variability, such
as the strong eastward KE path (cf. 0.02 contour lines of Figs.
2d,f) and the local negative anomalies over the northern and
eastern part of the North Pacific Ocean (Figs. 2d,f). This dis-
similarity of the reproducibility between ODA and RS-
ATMSST may arise from insufficient observational con-
straints in the ODA (e.g., sparse Argo availability or/and no
atmospheric data assimilation). A recent study (Fedele et al.
2021) points out that while the upstream KE region
(∼1408–1538E) is associated with eddy–mean flow interactions
as an oceanic front of the WBC (i.e., highest eddy kinetic
energy; Fig. 2a in Fedele et al. 2021), the downstream KE
(∼1538–1658E) is more influenced by the basin-scale air–sea
coupling linked to the extratropical North Pacific variability
(e.g., Pacific decadal oscillation). Consistent with this, our
findings suggest that the ocean assimilation and restoring
atmospheric components each may contribute to improving
the SSH representations of the upstream and downstream
region, respectively.

We next illustrate in Fig. 3 the evaluation of the temporal
evolutions of the KE low-frequency component. We first
compute ACC between observed and simulated SSH evolu-
tions in Figs. 3a and 3b. For computing ACC, both models
and observation are regridded to 18 3 18. Correlations that
are not statistically significant at the 10% level are not colored
(denoted as white). In general, the SSH variability estimated
from ODA and RS-ATMSST agrees well with the variability
observed by satellite altimeter over the majority of the Pacific
region with correlations above 0.75 (Figs. 3a,b). Overall,

the correlation coefficients range mostly from 0.75 to 0.95
except for the western North Pacific, where mesoscale eddy
activity is highly important. The WBC region exhibits little
agreement between the models and observation at many grid
points, showing statistically insignificant correlations. We note
however that in both ODA and RS-ATMSST the KE region
shows relatively higher agreement with the observation than
the rest of the other WBC regions (R . 0.55; zoomed-in box
in Figs. 3a,b). Consistent with this, we find that the estimated
SSH-based KE indices from both reanalyses strongly overlap
with the observed one, showing a high correlation (R 5 0.90,
p , 0.01) with the observation since 1993 (Fig. 3c). However,
the detection of the temporal evolution of KE SSH on both
interannual and decadal time scales in RS-ATMSST cannot
indicate the existence of adequate ocean dynamic properties
of the KE system (e.g., KE position and recirculation gyre
strength) because the KE SSH evolution of RS-ATMSST is
mostly contributed by the encompassed observed KE SSH
through restoring SST and atmospheric anomalies, not
induced by the actual KE jet variability including the impact
of ocean circulation or transport. Nevertheless, the strong
agreement in the KE fluctuations between the models and the
satellite altimeter suggests that these reanalysis systems can
be used as an important tool for long-term KE examination
beyond the satellite era (the period before 1992) as an
extended observation. In addition, as confirmed in previous
studies, both the observed and simulated KE indices show the
prominent quasi-decadal preferred time scale (∼10 yr) for the
recent decades in their power spectra (Fig. 3d) (Qiu et al.
2007; Joh and Di Lorenzo 2019; Anderson 2019; Siqueira et al.
2021). We especially note that the ODA coupled run without
atmospheric assimilation shows an appreciable ability to
represent the observed KE time scales (black line in
Fig. 3d). This suggests that the contribution of wind anoma-
lies (e.g., midlatitude wind forcing of oceanic Rossby waves)
or changes in pycnocline and corresponding low-frequency
SSH variability are adequately constrained by the assimila-
tion of subsurface observations, which enables ODA to
detect the atmospherically forced decadal variability of the
KE. The representation of the KE pattern in ODA appears
to be improved, especially over the central North Pacific
region, for the recent period (e.g., after the mid-2000s) due
to the full development of subsurface observations such as
Argo (not shown). Collectively, we confirm that both rean-
alysis products with different initialization approaches
(atmospheric/SST restoring vs ocean data assimilation) have
the capability to reproduce the accurate temporal evolution
of KE SSH fluctuations, which are comparable to the obser-
vation satellite. These reanalyses are used to generate initial
conditions for SPEAR prediction systems. We next examine
the prediction skill of the KE variability using decadal and
seasonal retrospective forecasts.

b. SPEAR forecast systems for KE prediction

1) DECADAL FORECAST

In this section, we explore KE prediction skills through
decadal (DRF) and seasonal (SRF) prediction systems

J OURNAL OF CL IMATE VOLUME 353520

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/05/22 06:03 PM UTC



initialized by the reanalysis system of RS-ATMSST or
ODA (see details in Table 2). We first examine the signifi-
cance of DRF KE forecasts by comparing performance
with that of the KE persistence. In nature, due to the large
thermal inertia of the ocean, the oceanic variables, espe-
cially SSH, evolve very slowly, having longer memory
than the atmosphere. The SSH-based KE index thus also
has a strong persistence (i.e., high autocorrelation) with lit-
tle month-to-month change. The damped persistence is
widely used in prediction research (Qiu et al. 2007, 2014;
Jacox et al. 2019). The significant correlations of the
dynamical climate forecast above persistence can provide
information regarding the underlying mechanism and the
related predictability.

The KE persistence forecasts and evaluations of decadal
KE prediction skills are summarized in Fig. 4a. Autocorrela-
tions of the KE index show that the memory of KE appears
to come mostly from the phase transition of its decadal time
scale oscillation (∼10 yr; bars in Fig. 4a). The CLIPER

forecasts skill reveals that the persistence skill is not statisti-
cally significant after lead year 2, showing that the forecast
drops below 0.5 after 2 years and becomes statistically nonsig-
nificant. The correlations between the predicted and observed
KE indices are shown as a function of lead time (in years).
We use both reanalysis (RS-ATMSST, a black line) and the
satellite altimeter (OBS, a green line) as the references to
compare with forecasts. The dynamical forecast shows signifi-
cant correlations above both the CLIPER forecast and the
Rossby wave adjustment KE prediction skill [green dashed
line, adopted from Qiu et al. (2014)] up to lead time 5 years in
both cases (bold lines in Fig. 4a). Particularly, for the lead
times of 1–3 years, the KE forecasts exhibit a relatively small
ensemblespread (i.e., less uncertainty), showing significant
correlations in all the individual members at the 5% level
compared with reanalysis (black dashed lines in Fig. 4a).
After lead times of 4 years, the ensemble spread dramatically
increases with a minimum correlation of ∼0.2, indicating that
the prediction skill largely varies between individual ensemble

FIG. 3. North Pacific SSH evolution and temporal characteristics of the KE SSH. (a),(b) ACC of SSH time series
(the 3-yr running mean) at each grid point between the observation satellite with (a) ODA and (b) RS-ATMSST for
the period of 1993–2019. Models and observations are regridded to 18 3 18. Correlations below 90% level are denoted
as white based on Student’s t test. The KE region is zoomed in on the extra black box next to the main panel. (c)
Observed and simulated SSH fluctuations over the KE region, as measured by the KE index. The correlations between
the observed and the simulated KE index are shown at the bottom right (R 5 0.90 with RS-ATMSST; R 5 0.87 with
ODA). (d) Power spectra of KE index from observation and reanalyses for the period of 1993–2019. The shading
denotes the 95% ensemble range.
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members. This result suggests that long-term KE prediction
of more than 4 years has more uncertainty in forecasts, and a
different selection of subsets of ensemble members or ensem-
ble size may affect KE prediction skill.

To show the impact of ensemble size on ACC, we conduct
the bootstrap test in Fig. 4b. A bootstrapping method is con-
ducted by selecting a random subset of n forecast ensemble
members and repeating 5000 times to produce a bootstrap dis-
tribution of the mean and range of forecast models for ensem-
ble size from n 5 1 to n 5 20. In the bootstrapped set, the
sampling is with replacement so that a given forecast ensem-
ble member can be selected more than once. The average cor-
relations between reanalysis (RS-ATMSST) and decadal
forecast (DRF) are shown as a function of ensemble size. The
mean of ACC from the bootstrapped forecasts indicates that
the forecast skill increases rapidly for small ensemble sizes
but quickly levels off for ensemble sizes exceeding 5–10 mem-
bers, especially for the levels of skill shown for lead times of
less than three years. Therefore, we find that an ensemble size
of 20 is sufficient (nearly saturated) for nearly achieving maximum
KE prediction skill for forecast lead times of 1–3 years. For the
long-term KE forecasts with lead times of 4 years or more, how-
ever, it shows that ACC can improve by increasing ensemble size
beyond 20. Taken together, using the SPEAR decadal prediction
system, we confirm the potential of multiyear KE prediction with
significant skill up to 5 years, especially highly reliable skill exceed-
ing the range of the ensemble spread for up to 3 years.

In Fig. 5, we show reconstructed KE variability from
DRF for the period of 1961–2020. From different forecast

lead times ranging from 1 to 3 years, we compare the fore-
casted annual KE index, its power spectrum to RS-
ATMSST, and the KE pattern. For 1–3-yr lead times, the
reasonable prediction (R 5 0.58–0.81) of annual KE vari-
ability is confirmed in the left column of Fig. 5. Also, the
observed time scales of KE (∼10 yr) are reasonably cap-
tured in the power spectra of KE forecasts, as shown in the
middle column of Fig. 5. From the lead time of 2 years, the
variance of KE appears to be slightly underestimated as
shown in the power spectrum (Figs. 5e,h) and spatial pattern
(Fig. 5f,i); however, we note that those spatiotemporal char-
acteristics of KE forecasts show robust and consistent fea-
tures across different forecast lead times, presenting the
strong quasi-decadal oscillations (∼10 yr) and apparent east-
ward KE jet signature.

2) SEASONAL FORECAST

We next examine KE prediction skills using the SPEAR
seasonal forecast system (SRF). In Fig. 6, ACC are plotted
as a function of forecast lead times and initialization seasons
in comparison with two references: ODA reanalysis (top
panels) and satellite altimeter dataset (bottom panels). The
ACC with ODA (Fig. 6a) show significant forecast skill
above persistence (i.e., CLIPER forecast) across all seasons
up to 3-month lead times. On the other hand, the ACC with
satellite data (Fig. 6c) exhibit no significant skill above per-
sistence for a short-lead forecast. We attribute the statisti-
cally nonsignificant short-lead KE forecasts compared with

FIG. 4. Measures of decadal forecasts of KE SSH from SPEAR decadal prediction system (DRF). (a) ACC are com-
pared to the persistence forecast (autocorrelation; bars). The black line indicates the ensemble mean correlations
between the forecast and the reanalysis (RS-ATMSST) for the period of 1961–2020. The green line indicates the
ensemble mean correlations between the forecast and satellite altimeter for the period of 1993–2020. Significant corre-
lations above the 5% level (dashed lines) based on a Monte Carlo approach are denoted as bold lines. The blue line
represents CLIPER forecasts skill on damped persistence predictions. Prediction skill based on the linear Rossby
waves model is denoted as a dashed light green line, adopted from Fig. 9 in Qiu et al. (2014), where the KE index is
predicted based on Rossby wave adjustment and KE wind feedback (two-way scenario). In every forecast lead year,
the full ensemble spread is denoted as a vertical bar. (b) Bootstrap test of ensemble size impact on ACC based on
5000 bootstrapped sets of ensembles. The line is ensemble mean ACC as a function of the number of ensemble mem-
bers used in forecasts. The shaded area indicates the 90% ensemble range from the bootstrap distribution.

J OURNAL OF CL IMATE VOLUME 353522

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/05/22 06:03 PM UTC



the observation satellite to the underestimated intrinsic
ocean dynamics, which are generated by nonlinear oceanic
mechanisms. As pointed out in previous literature (e.g.,
Fedele et al. 2021), relatively coarse-resolution ocean mod-
els would underestimate eddy kinetic energy near the ocean
front and insufficiently capture the short-lived eddy activity
or large-amplitude meanders compared to satellite altime-
ters. For the seasonal forecasts, thus which might suffer
from the impact of this short time scale eddy activity, the
short-lead KE prediction skills are found to be challenging
in the current SPEAR model configuration (i.e., 50-km
atmospheric and 18 ocean models). However, we note a con-
sistent tendency across different reference data, where the
lowest and highest long-lead KE prediction skill comes from
forecasts initialized in the warm (May–October) and cold

season (November–April), respectively (Figs. 6a,c). The
skill for different initialization seasons is examined in Figs.
6b and 6d. We find that while the forecasts initialized in the
warm season (April–September) exhibit less skillful long-
lead prediction (red line in Fig. 6b) or lower ACC than the
KE persistence (red line in Fig. 6d), the forecasts initialized
in the cold season (November–March) generate the significant
forecast skill above CLIPER forecasts, especially for long-lead
forecasts (i.e., 4–11 months; blue lines in Figs. 6b,d). These
findings suggest that KE seasonal forecast skill is both lead
time- and initialization month-dependent, which will be
explored further in section 3c.

A closer examination of seasonal KE forecast performance
is shown in Fig. 7. We first find that short-lead KE forecast
skills (red lines) are relatively constant across the different

FIG. 5. Examination of KE spatiotemporal evolutions from DRF for the period of 1961–2020. (a) Time series and (b) power spectra of
KE index from 1-yr lead time from DRF (a thick yellow line) and RS-ATMSST (a thick black line) are shown. For comparison with the
observed power spectra (i.e., a single realization), the spectrum of each ensemble member is shown separately (thin yellow lines). (c) KE
pattern (regression coefficient of SSH anomaly field with KE index) is reconstructed by DRF using 1-yr lead time. (d)–(f) As in (a)–(c),
but for 2-yr forecast lead time. (g)–(i) As in (a)–(c), but for 3-yr forecast lead time. The 20-member ensemble means of DRF are shown in
(a), (d), (g), (c), (f), and (i).
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initialization months (Fig. 7a) and the forecast target month
(Fig. 7b). However, we note that the long-lead forecast skills
(blue lines) greatly vary with respect to month (blue lines in
Figs. 7a,b). Specifically, the long-lead KE predictive skill is high-
est for winter initializations (December–February) and lowest
for late spring to fall initializations (May–October; blue lines in
Fig. 7a). The target month with maximum KE SSH forecast
skill is September (Fig. 7b). This result is consistently confirmed
in the different verification data (cf. dashed and solid lines in
Figs. 7a,b). Simply put, by using prior January initializations, we
can expect the best forecast skill for fall KE predictions.

As for the longer time-scale perspective, we find that the
decadal fluctuations of KE variability are well predicted
across all lead times (0–11 months), with statistically signifi-
cant ACC above KE persistence (R . 0.64) (left column in
Fig. 8). To investigate if the observed KE index can be
regarded as any member of the forecast ensemble, we show a
rank histogram (right column in Fig. 8). Rank histograms are

used to evaluate ensemble forecasts by indicating the reliabil-
ity of ensemble forecasts and diagnosing errors in their mean
and spread (Hamill 2001). The rank histogram in Fig. 8 is gen-
erated by repeatedly counting the order of observation rela-
tive to the 15-member SRF ensemble as the distribution of
frequency of the observation rank. Under the null hypothesis
that the observations were produced by the same process as
the model, the observations would appear with equal likeli-
hood at any rank so that the rank histogram would tend
toward uniformity (flatness) apart from fluctuations arising
from the finite sample. The sample histogram can be tested
for significant nonuniformity using a chi-square test. For lead
times up to 3 months, the forecast ensemble indicates a
U shape, which implies either biases or insufficient ensemble
spread (i.e., underdispersion). The U-shaped rank histograms
are often found in current forecasts due to an overconfident
forecast ensemble, which implies that more than 30 ensemble
members would be desirable for the short-term forecast

FIG. 6. Seasonal forecast skill of the KE SSH from SRF. ACC of the KE index with (a) ODA for the period of
1992–2019 and (c) the observation satellite for the period of 1993–2020 are shown. Forecast lead time is on the
x axis, initialization season is on the y axis, and the ACC are in color. The forecast lead time of 0 is for the month
of initialization. Dots indicate significant forecast skill above CLIPER forecasts. (b),(d) As in (a) and (c), but for
ACC averaged by different season initialization. Skill is shown for CLIPER forecasts (black line) and KE fore-
casts from cold (December–March; blue) and warm (July–October; red) month initializations. The 15-member
ensemble means from SRF are shown.
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(∼3 months). On the other hand, for lead times longer than
4 months, the rank histograms show a flat shape, which indi-
cates the observation is statistically indistinguishable, where
the observation can be considered as another ensemble mem-
ber (i.e., reliable).

3) MECHANISMS OF KE PREDICTION SKILLS

Our findings shown in sections 3a and 3b highlight two key
points: 1) significant KE (based on the annual KE index) fore-
cast skill is found on time scales up to 5 years in the decadal
prediction system (DRF) with January initializations. 2) Long-
lead (4–11 months) skill (based on the monthly KE index)
above persistence in the seasonal prediction system (SRF) is
confined to winter initializations (December–February). To
elucidate the mechanism behind KE forecast skill, we focus on
the dominant mode of extratropical Pacific climate variability
that strongly develops in boreal winter, which also has long
been described as a crucial mechanism to modulate the decadal
SSH variability over the WBC system (Frankignoul et al. 1997;
Miller et al. 1998; Deser et al. 1999; Seager et al. 2001;
Schneider et al. 2002; Qiu 2003; Qiu and Chen 2005; Taguchi
et al. 2007; Ceballos et al. 2009; Sasaki et al. 2013). The first
two dominant modes of North Pacific sea level pressure (SLP)
variability and associated wind stress curl anomalies from RS-
ATMSST reanalysis are shown in Fig. 9. The Aleutian low
(AL; Trenberth and Hurrell 1994) and NPO (Walker and Bliss
1932; Rogers 1981; Linkin and Nigam 2008) are defined as the
first (Fig. 9a) and second (Fig. 9b) leading empirical orthogonal
functions (EOFs) of monthly SLP anomalies in the Pacific
north of 208N, respectively. As presented in Figs. 9a and 9b,
when the phase of the dominant SLP modes has positive SLP

anomalies over the midlatitude region, the intensified anti-
cyclonic wind forcing results in an increase in positive SSH
anomalies through the Ekman convergence over a large
area of the western and central North Pacific, including the
WBC system. This immediate oceanic response to wind
forcing in the KE region can be detected in the cross-corre-
lation function of the KE with PC1 (i.e., AL index, positive
phase) and PC2 (i.e., NPO index, negative phase) at lag 0
(Figs. 9c,d). In Figs. 9c and 9d, the KE index and two PCs
are computed as a 2-yr running mean. At a lag of 0 months,
a statistically nonsignificant but positive correlation
between the KE and PCs reveals that these basin-scale
atmospheric forcings induce some fraction of the KE SSH
variance with no lag time.

Meanwhile, we note that these midlatitude forcings signifi-
cantly lead the KE by 20–30 months (Fig. 9d), consistent with
previous findings that changes in intensity and location of the
remote midlatitude wind forcing affect the WBC system via
the baroclinic oceanic adjustment. A correlation map between
the lagged meridionally averaged SSH anomalies and the two
PCs, which is represented as the time–longitude section of
318–388N (KE band), exhibits similar signatures to large-scale
oceanic Rossby waves. Consistent with Figs. 9c and 9d, a com-
parison of the two Hovmöller diagrams shown in Figs. 9e
and 9f (AL vs NPO) reveals that the NPO-type variability is
more significantly associated with the KE decadal SSH
changes than AL, by generating more deterministic westward
propagating Rossby wave signatures with larger SSH ampli-
tude. The NPO-related negative anomalous wind stress curl
over the central North Pacific (gray contours in Fig. 9b) is
near the KE latitude band, and thus more effectively drives
the wind-induced Rossby waves that propagate to the western

FIG. 7. ACC for forecasts of the KE index as a function of (a) initialization month and (b) forecast target month at
short (0–5 months; red) and long (6–11 months; blue) lead forecast times. Verification data are ODA (solid) and the
observation satellite (dashed). All panels are based on computations with the 15-member ensemble mean of SRF.
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boundary and contribute to decadal KE SSH variability (black
box) roughly 3 years later (arrows in Figs. 9e,f). However, we
note that depending on the scale and location of the midlatitude
wind forcing, the inertial memory of baroclinic Rossby waves
could vary (Kwon and Deser 2007). In addition, when the
Rossby waves are excited by strong, persistent wind forcing (up

to 2–5 years; Fig. 11) over the midlatitude Pacific, the additional
years of the predictable lead time of KE SSH variability could
be provided, thereby allowing that the lead time of significant
predictive skill (5 years in Fig. 4a) can be longer than the general
time scales of the baroclinic Rossby waves (2–5 years) (e.g., Latif
and Barnett 1994, 1996; Sasaki et al. 2013; Ceballos et al. 2009).

FIG. 8. Evaluations of SRF forecast skill KE SSH. (left) A comparison of the monthly KE variability between ODA
and SRF. KE forecasts of ensemble mean (black) and individual member (gray) are compared with the observed KE
index (red). ACCs between the observed and predicated KE index (ensemble mean) are shown at the top right in
each panel. (right) Rank histograms of KE index forecasts as a distribution for the rank of observations relative to the
15-member SRF ensemble.
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East of 1608W, the SSH signals appear to propagate eastward at
about 6 cm s21. The present study is concerned mainly with a
communication between the WBCs system and the central
Pacific, and we thus defer investigation of the causes of this east
Pacific propagation to a future study. It is possible that this

eastward propagation is associated with higher-mode baroclinic
Rossby waves over the North Pacific (Taguchi and Schneider
2014; Nonaka and Xie 2000).

To examine the seasonal dependency of KE forecast skill,
we investigate the seasonality of the NPO through the

FIG. 9. Basin-scale North Pacific atmospheric forcing associated with the KE variability from RS-ATMSST for the
period of 1958–2018. The first two dominant EOF patterns of North Pacific SLP (shading) are shown as (a) Aleutian
low (AL; positive phase) and (b) North Pacific Oscillation (NPO; negative phase). Associated wind stress curl anoma-
lies, which are regressed onto the AL and NPO time series (i.e., principal components) are denoted as contours
(1028 N m23), where the black and gray line each indicates the positive and negative anomalies. Cross-correlation
function of KE index with the (c) first and (d) second principal component (i.e., PC1 and PC2), where all the indices
are computed as a 2-yr running mean. Blue lines indicate the 5% level based on the Monte Carlo approach. Hovmöller
diagrams of lag correlations between (e) PC1 and (f) PC2 and meridionally averaged SSH anomalies over the KE
band (318–388N). All the indices are computed as a 2-yr running mean in the diagram. Stippling denotes grids where
the correlation is significant at the 5% level based on Student’s t test. The black box denotes the KE region defined in
this study. Arrows indicate the direction of the westward propagations of oceanic Rossby waves.
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distribution of NPO amplitude with respect to calendar
months in Fig. 10a. We find that the NPO with larger variance
(.1 standard deviation) is especially prominent during the
winter seasons (December–February), where the stronger
wind anomalies may play a more significant role in driving
sea surface anomalies over the North Pacific. Supporting this,
a comparison of Hovmöller diagrams between the cold and
warm seasons reveals that the NPO forcing appears to impact
the North Pacific Ocean more efficiently during the winter
(cf. Figs. 10b,c). Compared to the warm seasons (May–Au-
gust; Fig. 10c), the NPO during the cold seasons (December–-
March; Fig. 10b) drives the insignificant but stronger and
wider direct SSH feedback over the KE region (at a lag of 0
years) and triggers larger-scale oceanic Rossby waves with
stronger amplitude SSH anomalies (at lags of 0–3 years). We
confirm that the SPEAR decadal prediction system resolves
consistent SSH dynamics related to wind-induced remote
forcing (Fig. 11), which implies that the decadal prediction
skill may arise from the inertial memory of the upper ocean
(i.e., large-scale oceanic Rossby waves). In Fig. 11, the transit
time of the westward propagation from 1808 to 1408E is about
2.5 years; thus, the phase speed of the anomalous SSH propa-
gation is found to be approximately 4.6 cm s21, which is com-
parable to the observed phase speed of the first baroclinic
mode Rossby wave in the North Pacific (Qiu 2003; Kwon and
Deser 2007; Qiu et al. 2014). We suggest that winter initiali-
zation may contribute to the long-lead prediction skills
through winter intensification of midlatitude atmospheric
forcing as a crucial source for generating successful decadal
predictions of the KE variability.

As for the significant long-lead forecast skill detected in the
seasonal prediction system (Fig. 7), we note a similarity
between the behavior of the skillful prediction and the ree-
mergence mechanism (Namias and Born 1970; Alexander and
Deser 1995; Alexander et al. 1999), where the seasonal evolu-
tion of the mixed layer influences the behavior of surface
fluxes. The reemergence mechanism is known to occur over
large portions of the North Pacific Ocean, including the WBC
system (Kwon et al. 2010). Supporting the previous view, we
confirm that the reemergence mechanism at the KE region is
detected in the SPEAR seasonal prediction system (Fig. 12).
Specifically, a lag correlation map between the January KE
index and ocean temperature anomalies shows that the sur-
face anomalies formed over the deep mixed layer in the
prior winter are sequestered in the summer, then gradually
return to the surface in the following autumn. In the reemer-
gence mechanism, the remaining subsurface ocean heat
content can affect not only SST but also other oceanic
parameters, such as a mixed layer formation and structure,
buoyancy, and surface heat fluxes (Kwon et al. 2010; Na et al.
2018), affecting the seasonal prediction of KE SSH. This
mechanism supports our results that the most skillful fore-
cast initialized in winter and the best forecast for the fall
(Fig. 7). The significant prediction skill of August KE SSH,
however, is not clearly explained by the temperature anomalies
in the mixed layer (Fig. 12) and needs to be further examined.
In addition, in the reemergence mechanism, the temperature
anomalies in the deep winter mixed layer are difficult to alter,
whereas those in the shallow summer mixed layer tend to
undergo a considerable change; thus, the shallowest mixed

FIG. 10. Observed seasonality of NPO and the corresponding difference in SSH response over the KE band.
(a) Distribution of the number of years when NPO amplitude is larger than one standard deviation, sorted by
calendar month, for the period of 1948–2020. (b),(c) Hovmöller diagrams of lag correlations between the NPO
index and meridionally averaged SSH anomalies over the KE band (318–388N) from 1993–2020. Annual SSH
and NPO indices are used for the cold (December–March) and warm (May–August) seasons. The black box
denotes the KE region. SLP and SSH anomalies are obtained from NCEP–NCAR reanalysis and the observa-
tion satellite (CMEMS), respectively. The dot denotes a grid where the correlation is significant at the 5% level
based on the Student’s t test.
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layer in summer may amplify the forcing of zonal wind stress
errors. Given that the seasonal changes in the reemergence
mechanism are associated with the initialization month
dependence in KE seasonal prediction skill, we may explain
why the lowest and highest long-lead forecast skill come

from forecasts initialized in summer and winter, respec-
tively (Fig. 7a).

Based upon the above findings that the forecast skill varies
seasonally, peaking for forecasts initialized in winter and veri-
fying in fall, a comparison of September KE prediction skill
from between decadal and seasonal forecasts initialized in
January is shown in Fig. 13. The forecasts of the September
KE SSH of DRF and SRF are both highly comparable with
the observed September KE index from the observation satel-
lite for the recent 30 years. A notable difference in the predic-
tion performance between the two forecast systems is not
observed.

4. Summary and discussion

We use recently developed GFDL SPEAR reanalysis and
forecast systems and show that the characteristics of decadal
KE variability are reasonably represented and predicted in
the current coupled climate models. A comparison of the KE
spatiotemporal features reproduced in two reanalyses using
different approaches (i.e., RS-ATMSST vs ODA) reveals that
the assimilation of subsurface observations is critical to repre-
sent the latitudinal position and spatial structure of the KE
oceanic front. Without constrained subsurface observations,
the narrow frontal structure and the related oceanic variability
of the KE system appear to be inadequately represented due

FIG. 11. Time–longitude plots of monthly SSH anomalies averaged between 318 and 388N for (a) DRF with 1-yr lead
and (b) RS-ATMSST. The period of 1961–2018 is shown. The black boxes correspond to the KE region.

FIG. 12. Distribution of lag correlation coefficients for January
KE index to the temperature anomalies from the surface to 400-m
depth at the KE region (1408–1658E, 318–388N) for 1-month lead
forecasts (SRF).
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to the intensification of KE jet overshoot, given 18 horizontal
resolution of the ocean model used in this study. Our findings
show that an important source of seasonal and decadal pre-
dictability of the KE system is the SSH variability associated
with subsurface ocean variability that is driven by atmospheric
forcing. The North Pacific atmospheric forcing [e.g., the North
Pacific Oscillation (NPO)] is found to be the effectual source
of the atmospheric-driven oceanic variability propagation to
the KE region. Strong wind anomalies, particularly during the
winter season, maximize the forecast skill as a favorable initial
condition for KE prediction. Specifically, the larger amplitude
of NPO during winters excites more deterministic remote
forcing associated with wind-induced westward propagating
Rossby waves. We confirm that decadal KE predictions
provide considerable skill for lead times up to 5 years under
January initializations. In addition, stronger basin-scale
atmospheric forcing drives larger amplitude SSH anomalies
through local Ekman transport and generates winter-to-
winter persistence leading to long-lead forecast (4–12 months).
We suggest that the long-lead skill of the seasonal KE predic-
tion, which is mostly confined to winter initializations and fore-
casts of fall, is associated with the reemergence of subsurface
ocean temperature fluxes where the mixed layer deepens in
winter and shoals in spring. Through the analysis shown in this
paper, we confirm that SPEAR seasonal and decadal prediction
systems capture known mechanisms and critical processes gov-
erning the KE SSH changes and provide skillful KE predictions
on both seasonal and decadal time scales.

For confident KE forecasts, dynamical model predictions
are crucial because previous simple prediction models (i.e.,

linear Rossby wave equation) are limited by an inability to
detect full dynamics of air–sea coupled processes and physical
segments of the KE system. For example, Qiu et al. (2020)
noted a recent sudden transition of the KE state from a nega-
tive to a positive phase, which was not predicted in their pre-
vious KE forecast (Qiu et al. 2014). Specifically, the study
shows that the KE state (after 2014), which was predicted to
be in a negative phase up until about 2019, abruptly transi-
tioned to a positive state in late 2017. The study attributes the
failure of their KE forecasts to unexpected large meanders
that occurred in the Kuroshio region to the south of Japan in
early 2017, where the meander can be highly irregular and
chaotic with no dominant periodicities nor a preferred dura-
tion (Qiu and Miao 2000; Usui et al. 2013). The study points
out that while over the past three decades the wind-forced
KE variability prevails on the decadal time scale, the recent
large meander observed in the Kuroshio in 2017, which was
an unforeseen rare episode, has unexpectedly triggered posi-
tive KE SSH anomalies. This episode resets the KE state as
negative-to-positive SSH change, as shown in Figs. 14a and
14b. The study has demonstrated that the meander-induced
KE change is found to be significant because it affects the
overlying storm track and North Pacific atmospheric circula-
tions (i.e., wind pattern) as substantially as wind-induced
decadal KE changes.

Using SPEAR dynamical model KE forecasts, we find that
we were able to detect the recent transition of the KE decadal
state as shown in Figs. 14c and 14d. At first glance, the
decadal KE forecasts initialized in 2015 (camouflage color in
Fig. 14c) and 2016 (green in Fig. 14c) predict the continuous
neutral KE phase for all of 2017, which seemingly fails to cap-
ture the negative KE phase in 2017. However, as shown in the
observation satellite, the forecasts initialized in 2016 (green in
Fig. 14c) and 2017 (blue in Fig. 14c) exhibit a transition to a
positive KE state after late 2017 and successfully predict the
continuous positive KE after 2018. The seasonal KE forecasts
initialized in late 2016 (green in Fig. 14d) and early 2017 (blue
in Fig. 14c) also successfully detect the transitioned KE index
after late 2017. Both decadal and seasonal KE forecasts con-
sistently indicate above-average KE SSH anomalies for the
next few years (i.e., 2021 and 2022). In relation to what Qiu
et al. (2020) have reported, these results imply that the
dynamical model forecasts, especially SRF where the subsur-
face ocean is constrained by observations, may have the capa-
bility of capturing the impact of the Kuroshio path associated
with large meanders as well as the delayed oceanic adjustment
(Fig. S2). Supporting this, Qiu and Chen (2021) revisit the
occurrence of the large meander south of Japan in 2017
and conclude that such meanders might not be an entirely
intrinsic process but may be partly connected to large-scale
variability (e.g., regional wind forcing during a positive
phase of the PDO). Our results imply that the SPEAR pre-
diction system can anticipate some Kuroshio meanders that
are driven by large-scale wind forcing, but may still struggle
to resolve the random, internally generated component of
meander activity.

Given the effective initialization strategy (e.g., winter initial
condition), SPEAR forecasts provide a near-term prediction

FIG. 13. A comparison of forecasts of September KE SSH initial-
ized in January between the (top) decadal and (bottom) seasonal
prediction. Correlations of the annual September KE index from
between DRF and satellite (pink) or RS-ATMSST (red) are shown
in the bottom right at the top panel. Correlations of the annual
September KE index from between SRF and satellite (pink) are
shown in the bottom right at the bottom panel.
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skill of the KE above persistence for more than a couple of
years in advance, which is highly comparable to the observa-
tion from satellite altimetry (Figs. 4a and 6d). Under the
limited computational resources, the current initialization
procedure, where the current decadal prediction system is
based on only atmospheric/SST restoring, could be an effi-
cient way to resolve wind-driven low-frequency KE vari-
ability, which is mainly reliable to the given initialized
atmospheric anomalies. The short-term KE forecast, on the
other hand, highly requires nonlinear ocean dynamics, so the
current initialization configuration, including atmospheric restor-
ing and ocean data assimilation, also would be adequate.

Importantly, the ability to predict decadal variations of KE
SSH anomalies provides opportunities to project the regional
climate, such as the decadal behavior of the tropical rainfall
(Fig. 15). As Joh et al. (2021) have confirmed through comple-
mentary analysis using observations and numerical and empir-
ical dynamical models, the KE may exert a persistent
downstream response (i.e., wind stress curl) that projects on
atmospheric forcing of Pacific meridional modes and central
Pacific ENSO, especially for the recent period. Consistent
with this previous finding, we find that the decadal KE SSH
changes lead the tropical precipitation anomalies (i.e., in the
Niño-3.4 region, 58S–58N, 1208–1708W) by 2.5 years. The cor-
relations are statistically significant for the whole period
(for 1960–2019, R 5 0.49, significant at p , 0.05), and excep-
tionally high for recent decades (for 1985–2019, significant
R 5 0.73 at p , 0.01) in the SPEAR reanalysis system

(Fig. 14b). A strong overlapping of the decadal fluctuations
between the KE SSH and tropical precipitation in the east-
central Pacific (Niño-3.4 region) suggests that the KE forecast
may act as a potential source for multiyear predictability for
tropical variability, such as ENSO.

While the ocean–atmosphere coupling is important to
long-term KE prediction as demonstrated in Qiu et al.
(2014), due to insufficient horizontal resolution of the
SPEAR ocean model, the contribution of the atmospheric
response to the decadal KE state in the present study is
considered insignificant. In other words, the coupled atmo-
spheric response may not be the crucial source of skill in
the current SPEAR prediction system. However, we
believe that increasing ocean model resolution is beneficial
not only for the long-term KE prediction but also for the
short-term forecast because of the improved contributions
of short-lived intrinsic mesoscale eddy activity for resolving
dynamic properties of the KE system and the impact on the
large-scale atmospheric variability. Upcoming high-resolu-
tion (0.258 for ocean/atmospheric models) SPEAR coupled
systems (SPEAR_HI_25) may facilitate extensive investiga-
tion of detailed physical characteristics of the KE region,
including the volume transport, high mesoscale eddy vari-
ability, baroclinic instability, and so on. Increases in model
resolution may improve the representation of ocean dynam-
ics in the western boundary current system by more accu-
rately capturing oceanic fronts (i.e., sea surface gradient) and
small-scale intrinsic ocean dynamics. We expect that enhanced

FIG. 14. Recent transition of the KE phase and KE forecast for 2022/23. Observed annual mean SSH anomalies
over the KE region in (a) 2017 (negative phase of KE) and (b) 2020 (positive phase of KE). (c),(d) Detections of the
KE phase transition during 2015–21 in SRF. The monthly KE index from observation satellite (black) and DRF (col-
ors; ensemble mean) with forecast lead times of 1–48 months is shown in (c). The monthly KE index from observation
satellite (black) and SRF (colors, ensemble mean) with forecast lead time of 1–12 months is shown in (d). The circles
denote initialization months.
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air–sea coupling and more realistic atmospheric response
along the front (i.e., extratropical storm track) will allow
the detection of the deterministic KE atmospheric/oceanic
feedback onto large-scale air–sea interactions and climate
variability.
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